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QUADRATURE FORMULAE 
AND FUNCTIONS OF EXPONENTIAL TYPE 

QAZI I. RAHMAN AND-GERHARD SCHMEISSER 

ABSTRACT. In this paper we obtain certain generalizations of the trapezoidal 
rule and the Euler-Maclaurin formula that involve derivatives. In the case of 
quadrature of functions of exponential type over infinite intervals we find con- 
ditions under which existence of the (improper) integral and convergence of the 
approximating series become equivalent. In the process, we also establish a best 
possible version of a theorem of R. P. Boas and A. C. Schaeffer. 

1. INTRODUCTION AND SOME NOTATIONS 

The following result was recently proved by Olivier and Rahman [11]; also 
see [8]. 

Theorem A. Let m be a nonnegative integer. Further, let co0 = 1, whereas for 
m > 1 and O < u < m, let cm, 2J be given by 

(1.1) Qrn(x):=Jl (1 + (2J<Q) ) =Z Cm,2IXu 

If f is an entire function of exponential type less than 27r(m + 1), then 
r+0o m 00 

f2y 
(1.2) f f(X )dX=ECm 2g E ' (n), 

?? ju=0 n==-oo 

provided the integral on the left (taken in the sense of Cauchy) and the m + 1 
series on the right are convergent. 

It may be recalled that 
r+00 

j f(x)dx 

is said to exist in the sense of Cauchy if 
rX 

,im f(') dX 

exists; further, f ' f(x) dx exists in the sense of Cauchy if f0o f(x) dx and 

j0o f(-x) dx both exist in the sense of Cauchy. 
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Since we are dealing with entire functions of exponential type, it is natural 
to wonder if the requirement about the convergence of the series was not really 
redundant. That it may indeed be superfluous is suggested by the following 
result of Boas and Schaeffer (applied to fa f (C) dC) . 

Theorem B [2]. Let f be an entire function of exponential type 7Z. Then f(x) 
approaches a limit as x -* +oo if and only if 

00 

(1.3) Zf(k+x) 
k=i 

converges uniformly for 0 < x < 1 . 

Although Theorem B does not solve our problem, even in the case m = 0, it 
does offer some hope because it was not claimed to be the best possible result of 
its kind. This has served as a motivation for us to obtain the sharp version of 
Theorem B (see Corollary 2) and look for generalizations (hopefully) adequate 
to handle the question concerning the convergence of the m + 1 series in (1.2) 
for arbitrary m. 

Here are some other questions which may be asked with reference to 
Theorem A: 

Qi. Is there an analogue of Theorem A for integrals over (0, +oo)? The 
function may be assumed to be of (appropriate) exponential type in the right 
half-plane. 

Q2. Are there any analogues of Theorem A for integrals over finite intervals? 
If so, how are they related to some of the well-known quadrature formulae like 
the Euler-Maclaurin formula? 

We follow an alternative approach to Theorem A which turns out to be ap- 
propriate for the problem of Theorem B as well. It is based on the time-honored 
calculus of residues [9]-a technique which has already been used to obtain rep- 
resentations for the remainders of quadrature formulae and to consider various 
questions which arise in their study [10, 15, 4, 13, 14]. This approach also 
allows us to treat the two questions just mentioned. 

Before stating our results, it seems desirable to mention some of the notations 
we use. We write 

in 

(1.4) fin(z): = Cin 2u2 (Z) 

where the numbers cn, 2u are defined by (1. 1). In order to denote the error (in 
a quadrature formula) we use 

N_ 1/2 N-1 

(1.5) En[M, NN - f] fx) fdxx-fE fMnN(n) 
n=M 

N N-1 

(1.6) EJnM 5 N; f]:= f(x) dx- inM- Ef fin(n) --fizn(N) 
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where M and N are integers. We have chosen to set 

(1.7) p(z):= l/(l -e 
and 

(1.8) PM (x (!2m + (I! -U um u)m du = a/Ic 

By B2k we denote the 2kth Bernoulli number and by B2k (.) the Bernoulli 
function obtained by restricting the Bernoulli polynomial of degree 2k to the 
interval [0, 1] and continuing it with period 1 on the whole real line. Further, 
we set 

(1.9) A a, 2j 2j2y (1-2-2j+2+tI)C 

and 

B 
(1 I10) A2,2 2j: -o (2}-u) Cm, 2/1u 

where j = min{rm, j}. 

2. STATEMENT OF RESULTS 

2.1. Two basic formulae. Our investigations are based on two formulae con- 
tained in Theorems 1 and C. 

Theorem 1. Let T > 0 be a real number and let M, N be integers such that 
M < N. If f is holomorphic in the rectangle 

W1 ={Z C M- ?<Rez< N - IImz?<T}, 
then in the notations (1.7) and (1.8) we have 

NN-1/2 N-1 

A f(x)dx- tfn (n) M 1/2 ~n=M 
fT 1I 

- 
i ' 1S +e ( I 2) {f(N- 

I 
+ it) -f(N- 

1 
-.it)}dt 

pT / 1 N 
(2.1 ) -fi]P, i e2 ') {f(M - I + it) - f(M - - it)} dt 

N-112 
- P ((Pj(U -i T))f(u - iT) d u 

M-1/2 

rN- I/2 
- J P,1 (y(-u - iT))f(u + iT) du. M 1/2 

Theorem 1 contains an open quadrature formula. The corresponding closed 
formula exists for m = 0 only. It is the trapezoidal rule for functions holo- 
morphic in a rectangle. We state it as Theorem C and refer the reader to [6, 
? 13.14] and [ 10] for proof and comments. 
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Theorem C. Let T > 0 be a real number and let M, N be integers such that 
M < N. If f is holomorphic in the rectangle 

-2:=f{zEC: M<Rez<N, IImzI<T}, 
then 

N N-1 

ff(x) dx- -f(M)- -fi ()- -f(N) 
1n=M+ I 

(2.2) =i PO ( 27r) {f(N+ it) -f(N- it)}dt 

i T (1 {f(M+ it) -f(M- it)}dt 

ON 

- f {PO((p(u - iT))f(u - iT) + PO(qp(-u - iT))f(u + iT)} du. 

2.2. Quadrature over finite intervals. The formulae (2.1) and (2.2) in their 
present form are not convenient for numerical quadrature since their remain- 
ders Em[M- I, N - I; f] and Em[M, N; f] may not be small. We therefore 
need to modify the approximants so that they may allow the integral to be cal- 
culated with any desired degree of precision. With this objective in mind, we 
will study the two formulae further in the preeminently important case T -+ 0. 
The case T -+ oo is also of interest to us and will be discussed in subsection 2.4. 

Theorem 2. Let N and k be integers such that N > 1 and k > m. If 
f: [a, b] -- C is 2k times continuously differentiable, then in the notations 
of (l.1) and (1.9) we have 

bf (x) dx-h h 2+I Cm N2 - f a) a+ 2 h) 

(2.3) /= 
= 

- :h2'A1 2 {f(2 ')(b) -f(2i ') (a)} = Rl k m N[fI N 

J=I 

where h = (b - a)/N and (expressed in terms of the Bernoulli functions) 

R ,k, In, N[f] = h jf (2k)(x) E ci 2k ( h 2 dx. 

Theorem 3. Let N and k be integers such that N > 1 and k > m. If 
f: [a, b] -- C is 2k times continuously differentiable, then in the notations 
of (l.1) and (1.10) we have 

j 
f(x)dx - 

> 
h2+' 

Ic,, 2u 
{I f(2) (a) + .f(21u) (b) + E f(2y)(a+nh)} 

(2.4) kU0 
= 

+E 2JA t 2, 
l -) 

(b) 
_ 

fj(1 )(a)} = 
R2, k, in, N[A' 

J=J 
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where h = (b - a)/N and (expressed in terms of the Bernoulli functions) 

R2 k, iN[f] = hk fb(k ()c 2k jh) dx. 
a 

4=0i 

Remark 1. Formula (2.4) may be thought of as a generalization of the Euler- 
Maclaurin formula since it reduces to the latter if m = 0. 

The remainders RJ kmN[f] (j = 1, 2) in Theorems 2 and 3 can be con- 
trolled by the choice of k, m and N. For R2 k, m, N [f] we present an alter- 
native representation which shows the influence of k, m and N explicitly. 

Corollary 1. Let the function f in Theorem 3 be 2k + 2 times continuously 
differentiable. Defining 

(2.5) Mk, (X) = E (2k- 2,)!Cm, 2au 

we have 

(2.6) R2knN[fI=(a-b)( N a) M()) 

where 4 C [a, b]. Moreover, 

IR2, k, in N [f I 
2.7 2(b-a) /b-a 2k+2 2k+2-m 1 (2k+2) 

(MI)2 t27rN / 2k + 1 - 2m (m + 1)2k+2-2m a<xb I f (x 

2.3. Problems of convergence. Later on we shall study Theorems 2 and 3 for b 
and N tending to oo while h = (b - a)/N remains fixed. Thus we shall arrive 
at an integral over an infinite interval and an infinite series of samples fm(n). 
Of course, we have to be sure that the integral exists and the series converges. 
This is what we investigate next. With the help of the first basic formula we are 
able to show that for functions of (appropriate) exponential type the existence 
of the integral and the convergence of the series imply each other under a (weak) 
side condition. As the first result in this direction we prove 

Theorem 4. Let f be holomorphic and of exponential type less than 27r(m + 1) 
in the right half-plane. If 

(2.8) lirn j (t)dt 

exists, then in the notation of (1.4) 
00 

(2.9) E fm(n + A) 
n=I 

converges uniformly for A E [0, 1]. 

Remark 2. We wish to point out that the uniform convergence of (2.9) does not 
imply the existence of the limit (2.8) if m > 0 . In fact, f(z): = cos(27rmz) 
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satisfies the differential equation 
m 

Cm, 2,uy 

2u 
= 

'U=o 

as is seen from (1.1). Hence fm(z) -0 so that (2.9) converges uniformly, 
whereas (2.8) does not exist. This is unlike Theorem B. 

As a result in the opposite direction we have 

Theorem 5. Let f be holomorphic and of exponential type less than 27r(m + 1) 
in the right half-plane such that f (x) -* 0 as x - +oo0. If 

00 

(2.10) E: fm (n) 
n=1 

converges, then the limit (2.8) exists. 

We now state a few consequences of Theorems 4 and 5, starting with a best 
possible improvement of Theorem B. 

Corollary 2. Let f be holomorphic and of exponential type less than 27r in the 
right half-plane. Then f(x) approaches a limit as x -* +oo if and only if (1.3) 
converges uniformly for 0 < x < 1. 

Remark 3. The function 

f~z)=j Zcos(27) f(z) =d ?S2 C) 

is an entire function of exponential type 27r and limx-+? f(x) exists. How- 
ever, 

00 00 

E.f(k) = E 
k=i k=1 4 

does not converge. Hence the restriction on the exponential type in Corollary 2 
cannot be relaxed. 

For arbitrary m c No we have to be content with the following simple con- 
sequence of Theorems 4 and 5. 

Corollary 3. Let f be holomorphic and of exponential type less than 27r(m + 1) 
in the right half-plane. Then (2.8) exists if and only if (2.10) converges and 
f(x) -+ 0 as x -+ +oo. 

We next come to the main result of the paper, but first let us recall that 

r+0 
J f(x) dx 

-00 

exists as a Cauchy principal value, if 

j+ x 

/ {f (x) + f (-x)}I dx 
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exists in the sense of Cauchy and 
+00 

E: an 
n=-0o 

exists as a Cauchy principal value if 
00 

(an + an) 
n=1 

converges. 

Corollary 4. Let f be an entire function of exponential type less than 27r(m + 1) . 
Then 

r+0 
(2.11) f f(x)dx 

-00 

exists as a Cauchy principal value if and only if f(x) + f (-x) 0 as x +oo 
and 

+00 

(2.12) E fm (n) 
n=-coo 

exists as a Cauchy principal value. Moreover, 

r+0o +00 

(2.13) 
J 

f(x) dx = E fm(n) 
-oo n=-coo 

in the sense of Cauchy principal values if (2.1 1) exists. 

Remark 4. The quadrature formula (2.13) for entire functions of exponential 

type less than 27r(m+ 1) and belonging to L' (R) could be deduced from a result 
of Kress [8]. Olivier and Rahman (Theorem A) proved it under the assumption 
that (2.11) exists in the sense of Cauchy and (2.12) converges. The condition 
imposed here is still weaker. 

2.4. Quadrature of functions of exponential type in a vertical strip. As a first step 
towards obtaining quadrature formulae for functions of exponential type in a 
half-plane we find alternative representations for the remainders in Theorems 2 
and 3 under the assumption that the function is holomorphic and of exponential 
type in a (vertical) strip. 

Let 

(2.14) S[a, b]:= {z C: a < Rez < b}. 

A function f holomorphic in the strip S[a, b] is said to be of exponential type 
less than z > 0 if there exists an e > 0 such that 

(2.15) wf(z)i < ceh z S[a, b], 

with a constant c > O . 
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Theorem 6. Let N and k be integers such that N > 1 and k > m. If 
f is holomorphic and of exponential type less than 2(m + 1)N7r/(b - a) in 
S[a - (, b + (] for some ( > 0, then in the notations of Theorem 2 

2k 
+00 

t ~~fl2k) (2k) (2 )R. k, i,n NV] = h Li k m (h-) 
(b + it) -f (b -it) 

-f (a + it) + f(2k) (a - it)}dt, 

where 
oo -27rtV 

(2.17) L ( k = (-1)v 
e 

TkQm (i2nv) 

Theorem 7. Under the conditions of Theorem 6 and in the notations of 
Theorem 3 we have 

(2.18) R2 k in, N[f] = h j L2 k I() {f( k(b + it)-f (b - it) 

(2k) it f2k f (a + it)+(2k)(a - it)} dt, 

where 
oo -27rtv 

(2.19) L2 ,,(t):= i(1)k 
e 

(2 )km- 2l 

V=m?1 (27rv) 
2.5. Quadrature of functions of exponential type in a half-plane. Setting a = 0, 
b = Nh and letting N -+ oo, Corollary 3 allows us to deduce from Theorems 
6 and 7, respectively, the following two corollaries. 

Corollary 5. Let k > m be an integer and h > 0 be a real number. Further, let 

f be holomorphic and of exponential type less than 27r(m + 1)/h in the half- 

plane {z c C: Re z > -(5}, where ( is some positive number. If the integral 

of f over [0, +oo) exists in the sense of Cauchy and the numbers A1, 2j are as 

in (1.9), then 

J 00 00 2uI m 

m 
'2,u 1\+ 

f(x)dx - Zh2'2+cm 2fu(21) ( 2+ h) 

(2.20) k 

- Zh 2A1 2f(2 1(0) + PI, k, mh[h]' 
j=1 

where P, k, in, h[f] is given in terms of the function Ll k, n of (2.17) by 

(2.21) P kmnh[f] =-h h2k Llk m () f(2k) 
(it) f(2k) (-it)}dt. 

Corollary 6. Under the assumptions of Corollary 5, we have 

J 00 00 i 2u IC f(2ju) 
f (x) dx Z E h2" c m2,uf (nh) 

0 n~l u=? 
(2.22) 2k-I 

+ : h Cjf' (?) + P2 k, h[ f]' 
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where in the notation of ( 1.10) 

C forj=0,2,...,2rn, 

(2.23) C A for j = 1, 3, ..., 2k- 1, 
0 O in all other cases, 

and P2 k, in h[f] is given in terms of the function L2, km of (2.19) by 

(2.24) P2 k, in h[f] =-h |j L2,k m(h) {f()(it)hf (-it)}dt. 

For h = 1 and k = m = 0 the formula of Corollary 6 reduces to the 
"summation formula of Plana" [7, p. 274]. For another quadrature formula 
over [O, +oo), see [13]. 

Example. Let f be an entire function of exponential type z, real on the real 
line and bounded there by a constant A', say. Then by Bernstein's inequality 

if(2k+1)(x)I < 'r2k+1 for x e R and by a result of Duffin and Schaeffer [1, 
Theorem 6.2.6* ], 

If(2k +)(x + iy)?I < lT2k+ coshry for x + iy c C. 

Now by integration we get 

I (2k) it f(2k) (_it)~ I r~ 2k?l 1t (2.25) If(2k)(it)_ f( < 2,9 k r sinhrtl < 21(r t~coshrt. 

Using this bound for estimating (2.24), we obtain after integration by parts 

P2,k,~~~h~~fi2k?12A'h7 V2+ T 2h 
2 

Qm(i27(v)I 

v 1 mIl (47l J - 2T h2)2 (27rv)2k 
where h has to be chosen less than 27r(m + 1)/r. Since 

in 2 .2 2in 

(2.26) IQ,,,(i27rv) = v 2rn V *-J < V 

( ) jv (m!)2 

the infinite series may be estimated by 

1 1 ~~02 2 2 2 z 1 ?? l+T h/47v 
(m!)2 (27r)2k+? 1 (1 - T2h2/47r2v2)2 .2k-2tn+2 

1 1 l + T2h2/47r2(M + 1)2 

(m!)2 (27r)2k?2 (1 - T2h2/47r 2(m + 1)2)2 

{ (m + 12k 2nm+2 + X2k-2rn+2 dx} 

1 1 1 )Th -2 2k + 2 - m2k 

(M!)2 (27r)2k . 27(m + 1) (2k + I - 2m (m + l)2k-2tn+2 

which shows various possibilities to control the remainder. The upper bound 
for IP2nk, rhfi obtained this way is also an upper bound for IPnkrhLf 
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If f is given to be holomorphic in H,: = {z c C: Re z > -a} for some 
a > 0 and satisfies 

If(x + iy)I < ceIYI, x + iy H, 

then, using (3.18) for the (2k + 1)st derivative and taking y to be the circle of 
radius J centered at x + iy, we find 

lf(2k+1)(X + iy) I< cez3 
(2k + 1)! eZIyj for x > 0. f (x~~iy)~~?ce 

(52k?1I 

Consequently, 

If (it) -f )(-it)I < 2ce"a (2k + 1)!-( 1 )t 

z(52k+ 1) 
< 4ce (52k 

+ 
t1) TtI coshrt, 

which could be used in the same way as (2.25) to obtain an estimate for the 
remainder. 

Remark 5. While we have assumed f to be holomorphic in a strip or a half- 
plane or in the whole plane, functions having a finite number of isolated singu- 
larities may also be considered. The singularities will contribute to the residues, 
and the quadrature formula will have to be accordingly modified. Functions 
holomorphic in sectors containing the interval of integration can also be treated 
using appropriate contours and properties of the Phragmen-Lindelof indicator 
function [1, Chapter 5]. 

2.6. Further results on the question of convergence. The following result is ob- 
tained by applying Corollary 4 to the function f (z) * f (z) . 

Corollary 7. Let f be an entire function of exponential type less than 7r(m + 1). 
Then f c L 2(R) if and only if f(x) -0 as x - ?oo and 

oo in d 2,u _\ 
(2.27) Z Cm, 2,u ( f; ( .f(z) 

n=-oo ,u=O z=n 

exists as a Cauchy principal value. Moreover, if f c L2(R), then If 112(R) is 
equal to the quantity (2.27). 

In the case m = 0, Corollary 7 reduces to a result in [14, Theorem 2.1, 
equation (2.7)]. 

Here is another consequence of Corollary 4. 

Corollary 8. Let f be an entirefunction of exponential type less than 27r such 
that f +O f (t) dt exists in the sense of Cauchy. Then 

00 

(2.28) a f(l)1(n) = 
n=-oo 

for all ,u > 1I. 
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By obvious modifications of the proofs of Lemma 4 and Theorems 4 and 5, 
we obtain 

Theorem 8. Let f be holomorphic and of exponential type less than 27r(m + 1) 
in the right half-plane. If 

(2.29) j f (t) dt 
1/2 

remains bounded as x -* +oo, then (2.9) has uniformly bounded partial sums 
for i E [0, 1]. 

Theorem 9. Let f be holomorphic and of exponential type less than 27r(m + 1) 
in the right half-plane. If (2.10) has bounded partial sums and f is bounded 
on (0, +oo), then (2.29) is also bounded on this interval. 

Theorems 8 and 9 may be compared with Theorem 3 of [2]. 
As we will briefly indicate, the proofs of Lemma 4 and Theorems 4 and 5 

can be modified to obtain the following two results which are in the spirit of [2, 
Theorem 4]. 

Theorem 10. Let f be holomorphic and of exponential type less than 27r(m + 1) 
in the right half-plane. If 

(2.30) lir f f (t) dt 
X +?? X 1/2 

exists, then 
1 N 

(2.31) lim N E Zm(n + 
n=1 

exists uniformly for i c [0, 1] and is the same for each i. Further, the limits 
in (2.30) and (2.31) are equal. 
Theorem 11. Let f be holomorphic and of exponential type less than 27r(m + 1) 
in the right half-plane. If N 

lim NE fm (n) 
n=1 

exists and f(x) = o(x) as x 
-* 

+oo, then (2.30) exists, and the two limits in question are equal. 

2.7. Applications to uniqueness. It seems interesting to us that the quadrature 
formula in Corollary 4 can be used to obtain certain uniqueness theorems for 
entire functions of exponential type. To place our results in perspective we 
recall 

Theorem D. If f is an entire function of exponential type less than 7r(k + 1) 
and f(n) = f'(n) = * = f(k)(n) = 0 for all integers n, then f(z) - 0. 

Theorem E. If f is an entire function of exponential type less than 7r(k + 1) 
and f(2')(n) =0 for = 0, 1, ...,k and all integers n, then 

k 

f(z) = a/1 sin7ruz, 
wu=O 

wh ere oz, al lZ Ozk E C.- 
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Theorem D is a trivial generalization of a classical result of Carlson [16, 
?5.81] and Theorem E is due to Bruck [3]. In order to state our results, which 
are variants of the above two theorems, we need to introduce a 

Notation. We use S or SI, S2, ... to denote sectors of the form 

{z EC: qpl < arg z < q2} 

with ? < O 2 - (1 < U. In particular, S may be the interval [0, +oo). 

Theorem 12. Let k be an odd integer and let f be an entire function of expo- 
nential type less than 7r(k + 1) which does not grow faster than a polynomial 
on the real line. If f(j)(n) = 0 for j= 0,... ,k-1 and f(k)(n) eS for all 
integers n, then f(z) _ 0. 

As is shown by the example f(z) = sink 7rz, Theorem 12 does not hold for 
even k. 

Theorem 13. Let f be an entire function of exponential type less than 7r(k + 1), 
where k c N, such that f'(x) - f'(-x) tends to zero as x -* +oo. Set 

* fk for odd k, 
k +1 forevenk. 

If 
f(2v) (n) = O (v= 0, ,(j- 1)/2) 

and 

(2.32) f(2'1)(n) c S, (y = (j + 1)/2, ... , k) 

for all integers n, then 
k 

f(z) = EOa Y 
sin 7r z, 

,u=O 

where o0, I1,..., ak C C. 

3. LEMMAS 

In order to make the exposition as lucid as we can, we present many of the 
details in the form of lemmas. But first we shall bring in some further notations. 
The function 

(2m + 1)! '~m \ 1 
2y,11 (3.1) K,((z):= (2,n+ )2 2+1 (cot7rz) Z 

plays an important role in our work. We find it convenient to introduce for 
k = 0 1, ... the functions 

00 -27,,, - 
(3.2) I(z) = 1(11 

(27rv/) 
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(. -)27r1vz 

(3.3) vk(Z): ik+1 E e 
k 

V= (27rv) 

defined wherever the series converge. Obviously, 

(3.4) cD/(z) = Dk1(z) '14(z) = k1(Z) 

wherever they are differentiable. Furthermore, it is known that [12, pp. 226- 
227] 

(3.5) 2ImrP2k(x)=-B2k(X) for x c R, 

(2k)! 

(3.6) 12k (0) =- 2k 
2 (2k)! 

and 

(3.7) 02k(O)= T2k (2)2(2k)!( -2 )2k 

where B2k(.) and B2k have already been defined in ? 1. 

Lemma 1. The meromorphic function Km can be represented in terms of the 
functions fo and Pn introduced in (1.7) and (1.8), respectively. To be explicit, 
we have 

(3.8) Km (Z) = + PM (((Z)) 

and also 

(3.9) Kin(z) =2 - n -)) 

Proof. In fact, for z :& n7 (n = O. +1, ... ), 

(2m + 
1)! cI 

COt 

7(Z 2 K (z) 2(m!)2 Jo (1 - t )mdt, 

as is seen by applying the binomial theorem under the integral sign and inte- 
grating term by term. Noting that -icotzrz = 1 - 2fo(z), we obtain 

f-lcot~z -( t2)' dt (1 - t2) dt + (1 -t ) dt. 

The first integral on the right-hand side is equal to 22'n(m!)2/(2m+ 1)!, whereas 
the second one may be written as 

( 1- t dt =-22(n1 ] ' - u) du. 

Hence (3.8) holds. The representation (3.9) follows since Kin is an odd function 
of z. u 

The relevance of the function Kin is clearly demonstrated by the next lemma. 
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Lemma 2. Let n be any integer and let f be holomorphic in a neighborhood of 
n. Then 

m 
(3.10) E cm 2j f ( 2) (n) = 27i Res(Km (Z) * f (Z))z=n 

,u=0 

Proof. In view of the periodicity of Km it is enough to prove the statement for 
n = 0. Since Km has a Laurent series development of the form 

00 

Kn1 (Z) =,bm Z28 
- I 

(O < | Zl < 1 ), 
,u=-m 

we readily obtain 

(3.11) Res(Km(z) .f(Z))Z=0 = bm1-2u-I (?) 

Now if we set 
m 

Qm(x): = 27(i E Z 8 bm,-2u-lx 

then it will be enough to show that Qm (x) Qm (x). 
Applying (3.1 1) to f(z) = ei2Tjz , we obtain 

(3.12) Res(Km(z) * ei27rjz)zo = Qm(i2Ij) . 

On the other hand, 

(3.13) Res(Km(z) .ei2TjZ)z=O = 20 d I Km(z)ei2j zdz, 

where F is the positively oriented boundary of the rectangle with vertices at 
: 11? iT (T > 0). Since the integrand in (3.13) has period 1, the contribu- 
tions coming from the two vertical sides of F cancel. Furthermore, using the 
representation (3.8) for Km(z) in the lower half-plane, and (3.9) in the upper 
half-plane, we find that the contributions coming from the horizontal parts of 
F tend to zero as T +00 provided j c {?1, ..., +m}. Hence, (3.12) and 
(3.13) yield that 

Qm(i27tj)=O for j=1, ..., m 
and consequently 

(3.14) (27r)! Q (x) (27r) (m!) Qm(X). 
m, -2m-1I 

From the definition of Km we find that 

bm =-2m I (2m)! 

bm -2m- 1 =-Z (27)2m+I (M!) 

and so (3.14) reduces to Qm (x) Qm (x), which completes the proof of 
Lemma 2. oI 

As stated, Theorem C deals with E0[M, N; f] only, but it is possible to 
deduce from (2.2) a representation for Em [M, N; f]. In fact, there is a 
very simple relationship between Em [M, N; f] and E0[M, N; f] and also 
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between Em[M - 1, N - 4; fj and E0[M - I, N - 4; f]. To be precise, we 
have 

Lemma 3. Under the assumptions of Theorems 1 and 2, respectively, and in 
the notations of (1. 1), (1.4), (1.5) and (1.6) we have 

Em[M- I, N -; f] = Eo[M- 
I , N- ; fm] 

m 
-fl f 

{f(2,u-1)(N - ) _ f(2,u-1) (M- ) 

m 
Em[M 5 N; f] = EO[M, N; jm]- ECm, 2,u f f2 

- 
1)(N) _ f(2, l) (M)} 

ju=1 

Proof. We have 

0[ 2,-J N -2 ; jm] Z m 22) (x) dx- E fm(n) 

rN- 1/2 N-i1 ' m N _1/2 

= {| f(x)dx- Z fm(n)} +ZCm 2,I f12' (x)dx 

m 
Em[M - l, N- 1; f] +En Cm 2{ f f(2 -(N -1) _ f(2"1M )> 

,u=l 

which proves the first of the two identities. The second is proved in the same 
way. El 

The next three lemmas will be useful in our study of the integrals appearing 
on the right-hand sides of (2.1) and (2.2). 

Lemma 4. Let f be holomorphic and of exponential type less than 27c(m + 1) 
in the right half-plane such that f(x) -* 0 as x -* +00. Then with Pm as in 
(1.8), 

p+00 / 1 N 
lim / Ptn 27t ) {f(N+i+it)-f(N+A-it)}dt=O N-+?ooo 1+e / 

uniformly for A E [4, 1]. 
Proof. Since f (x) -* 0 as x -* +x0, the function f is bounded on the positive 
real axis and so [1, Theorem 6.2.3] 

(3.15) If(x + it)I < ce6 K 0 < x < +x0, t E R 

for some c > 0 and some a < 27c(m + 1). Thus, taking (1.8) into account, 
there exists for given E > 0 an w) > 0 such that 

| Pm ( 27,, ) ff(N +Ai+it)- f( N+ A -it)l}d t < 2 _ _ _ e 
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whenever N +A > 0 . Furthermore, by a theorem of Montel [1, Theorem 1.4.9], 
f(x + it) tends to zero as x -* +00 uniformly for t c [-w, w]. Hence there 
exists an No > 0 such that 

f 
in ( 7 +>) {f(N+A+ it) -f(N+A- it)}dt < 2 

for all N > No and A c [1 i3 1. With this, the proof of our assertion is com- 
plete. u 

Lemma 5. Let L be the straight line segment joining the points ?iT and let 
g: L -* C be k times continuously differentiable. Then 

i1 PO (1 e 27t) {g(it) - g(-it)} dt 

k 

= i ,SJ(-iT){g(Jl)(iT) + (-l)jg(ji')(-iT)} 

(3.16) [= 
[k/2] B 2'(i- 

+ 1] 2 j ( I 2-2J+l 1 g(2J 
- 1 ) (0) 

j=(2])! 

+ f Ok (it){g (it) (-1) g (k it)} dt 

and 

i PO (1 e2t) {g(it) - g(-it)} dt 

k 

= i E T{(-iT){g(j )(iT) + (-1)Jg(J 1)(-iT)} 

(3.17) J=] 

j= (2j)!g 

+ Tpk (-it) {g(k) (it) -(-1)k g(k) ( it)} dt. 

Proof. Noting that for t > 0 

i? (1 + e27M ) ? 

and 

iPo T O(-it) 
ihe (es1 ee 27bt p 

the results follow by repeated integration by parts, using (3.4)-(3.7). u 
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Lemma 6. Let g: [A, B] -* C be k times continuously differentiable; then in 
the notations of (1.7), (1.8) and (3.3) we have 

rB 

L Po((+u - iT))g(u) du 

k 

= iZ(T{l){Tj(?B - iT)g(j 1)(B) - Tj(+A - iT)g(J )(A)} 
j=1 

- it Jrl)k | ok ( J -i T)g) (u) d u. 

Proof. Since 

Po(fo(u)) = -Mo(u), 
the result follows by repeated integration by parts, using the second formula of 
(3.4). El 

We also need the following lemma about functions holomorphic and of ex- 
ponential type in a strip. 

Lemma 7. If f is holomorphic and of exponential type less than z in the strip 
S[a, b] defined in (2.14), then all the derivatives of f are of exponential type 
less than zin S[a + A, b - (] for every ( E (O, (b - a)/2). 
Proof. The result follows from the formula 

(3.18) f(k) (Z)= k! 
. 

f()+ did 

taking as y the positively oriented circle with center at z and radius (s. E 

4. PROOFS OF THE RESULTS STATED IN ?2 

Proof of Theorem 1. Let F be the positively oriented boundary of M, . Then 
by the residue theorem and Lemma 2 we have 

N-1 

(4.1) E fm(n) = Km(Z)f (z) d z. 
n=M 

If r1 denotes the part of F lying in the closed upper half-plane and F2 the 
rest, then using (3.8) for z E 12 and (3.9) for z E F1 we obtain 

jKm(z)f(z) dz = - f (z) dz -f Pm((o(-z)) f(z) dz 

+ 2 f (z) dz + Pm((O(z)) . f(z) dz. 

But by Cauchy's theorem, 

r DI~~~N- 1/2 A 

f(z)/dz f(x)dx= f(z)dz, 
IF1 IM-1/2 2 
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and so 
I> N -1~~~~N /2r 

Km(z)f(z)dZ = f f(x)dx-f Pm((O(-z))f(z)dz 

+ I Pm(fO(z))f(z) dz. 

Now, on splitting F1, F2 into their horizontal and vertical parts and combining 
the terms appropriately, we easily arrive via (4.1) at formula (2.1). o 
Proof of Theorem 2. It is enough to prove (2.3) for a = -2 b = N - 2 I h = 1 
and apply the result to f(a + h(x + 2 ). Furthermore, given e > 0, using the 
approximation theorem of Weierstrass, we find a polynomial p such that 

max Ijf() (x) -p i) (X) < 'C 
-1/2<x<N- 1/2 

for j = 0, ..., 2k. Hence we may assume f to be holomorphic in 

{z EC: - I < Rez < N- 2 IImzI < T}, T> 0. 

Applying Theorem 1 with M = 0 and m = 0, we obtain for T -- 0 
N-1/2 N-1 fN (1/2 

f f(x) dx - 1: f(n) = - Po(4v(u)) + Po(4o(-u))}f(u) d u. 
J-1/2 n=O 

By Lemma 6 with k replaced by 2k, the right-hand side is equal to 

2k N-1/2 

-i5?{(-1)j~j(u) + Ij(-u)}f1'-1)(u) 
j 1 -1/2 

~.N- 1/2 (2k) 

+ i | T {2k (U)+ T2k( u)}f (u) du. 
-1/2 

With the help of (3.5) and (3.7) we get 

E 2[-, N-2;] 

(4.2) E B~~2j (I - 2-2j+l)f f(2j- 1)(N- I) -ft (-21)}_I) 
(4.2) -S(2j)!'- 22{~'N 2 

[NI /2 (2k) B 2k(X) d 
+ (x) (2k)! dx. 

This can be used to obtain a representation for E, [-- N -; f], since by 
Lemma 3 

E - N - jf] m-2 -2;t 
in 

(4.3) = Eo[-, N- 2; f]+Ecn, 2,f{Eo[-2, N--; f2] 

- f(2#- )(N - 1) + 2-1)(_ 
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Applying (4.2) to f(2y1) with k replaced by k - ju we obtain 

E [- I ,N - 4; f(2u)] - f(2'-1)(N - 1) + 
f(2I- 1)() 

k-u B 

= E (2])! (1 - 22j+1){f(2+2-1)( 1) (2+2j-1) 

j=- (2j(k !) 
+ 1N1/2 f(2k) B2k-21jx) d 

k B 
2j 2- 2, (i - 2-2j+2ju+l)ff(2j- 1)(N - 2) 2j -2)}_1) 

=Z(2] - 2/i)! (-)f2) (-2 

N-- 1/2 / 2k) B2k - 2/ (x)d + I/ (x (2 k -1y)' dx, 

and so 
in 

Cm JE0[- N - 4;2u) f(2(2u- f 1 )(N - 1) + f(2u-1)( 1), 

k 

- Z{If(2 -)(N - 4) - f(2j-1) 

(4.4) 1rin{rni} B 
X 2J - 2# ( -2- 2Jy I 

)C 

+ J f(2) 
(X) Cm 2u 2k -2y), dx. 

Adding each side of (4.4) to the corresponding side of (4.2) and taking note of 
(4.3), we obtain 

E, [-4, N- 4fi 
k 

= Z{ff(2J-1')(N - 4) _ f(2j- 1)(-)} 

J=1 

min{in J} B 
X E 

2j - 2,u (I - 2-1 2j+2J? +l 2Ii 

X 0 (2j-2f2)! 

+ j '/2k) (X) E Cm, 2#l (2k -2ju()! dx , ~N1/2 f(2k) 2k -2,(x)!d 

which is equivalent to (2.3). a 

The proof of Theorem 3 is analogous to that of Theorem 2, and so we omit 
it. 
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Proof of Corollary 1. Using (3.5) and ( 1.1), we find that 

(4.5) Mkm(x) = (-l) 2 E (2 V)2k Qm(i2n). 

Starting now with 

R2,k mN[f] = h ; f(2k)(X)M (X-a) dx, 

two integrations by parts yield 

R2, k, n, N [f] 

(4.6) - H2k?2 jb {M k+m() - Mk+ ,m (x 
- 

a) } f(2k+2) (x) dx. 

From (4.5) we readily see that 

IMk m(X)I < IMkm(O)l 

for all x c R and k > m . Hence, the term in curled brackets on the right-hand 
side of (4.6) does not change sign. Therefore, applying the mean value theorem 
for integrals, 

k [f] = h2k?2f(2k?2)(e) | {Mk~l m(O)-Mk~l, m (X h )} dx 
22f2k?2) (2x?-) 

=(a - b)h 2k+2f(2k+2)()Mk+ m(O) 

This is (2.6). 
Using (2.26), we obtain the estimate 

2 
0 

1Mk+l, tn(?)1 - (M!)2- (27r )2k+2 E: ,2k+2-2m 

Furthermore, 

52?- 1 fEixk?-m 
v2k+2-2m (m + 1)2k+2-2m + X2k+2-2mdx 

2k+2-m I 

2k + I - 2m (m + 1)2k+2-2m 

This shows how (2.7) follows from (2.6). Eu 

Proof of Theorem 4. The existence of the limit in (2.8) implies [1, Theorem 
11.3.4*] that f(x) -* 0 as x -* +oo, and so (3.15) holds for some c > 0 
and some a < 27r(m + 1). Further, from (1.7) and (1.8) it follows that 
Pin((p(u- iT))I and IPn(Vo(-u- iT))I behave like 

(2m + )! -2,(m+1IT as7T-*+oo. 
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Hence, Theorem 1 applied to f(- + A) gives 
N-i 

1: ,,(n +) 
n=1 

(4.7) = 1/2 f(x + A) dx - i jf Pm 1 + e2Zt) 

x ff(N - ' + A + it) - f(N - I + A - it) 
- f(I + A + it) + f(I + A - it)} dt . 

Now the desired result follows from Lemma 4. n 

Proof of Theorem 5. Starting with (4.7) for A = 0 and using Lemma 4, we can 
conclude this time that 

N-1/2 

lim / f(x) dx 
N +?oo J 1/2 

exists for N E N. This and the fact that f(x) -* 0 as x -* +0x imply the 
existence of (2.8). o 

Proof of Corollary 2. Let g(z) = f'(z + 1) . Then by Lemma 7, g is holo- 
morphic and of exponential type less than 27r in the right half-plane. If f (x) 
tends to a limit as x -+ +oo, then 

r+0 

f;2 g(x) dx 
1/2 

exists in the sense of Cauchy. Hence, applying Theorem 4 with m = 0 and 
f replaced by g, we obtain the uniform convergence of (1.3). Conversely, if 
(1.3) converges uniformly, then g(x) -O 0 as x -* +oo, and the desired result 
follows from Theorem 5. o 
Proof of Corollary 4. The first statement follows by applying Corollary 3 to 
the function f(z) + f(-z). For the proof of (2.13) we may use Theorem 1 
directly with M = -N + 1 . Letting first T -- +oo and then N -* +oo, the 
result follows by taking into account (1.8), Lemma 4 and the estimate (3.15) 
for f(z) + f(-z) . o 

Proof of Theorem 6. It is enough to prove the theorem for a = -- b = N-I 
h = 1 . Let us first consider the case m = 0. Applying Theorem 1L with M = 0 
and expressing the integrals on the right-hand side of (2.1) with the help of 
Lemmas 5 and 6 and with k replaced by 2k, we find 

N-1/2 N-1 

E0[- 2, N - 1; f | f(x) dx - E f(n) 
-1/2 n=O 

2k 

i E (j(-iT){ f (j 1)(N - 2 + iT) + (-1)'f(j')(N- - iT) 1 2 ) 
J=1 

- f(- + iT) - (-I) 2( - iT)} 
k - 

+ ' (21 - 2 2j+l){f(2j- ')(N - ) _ f(2j-1)(_ 1), 
(= ] (continues) 
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(continued) 

+ fT?2k(Dit){f()(N- 2 + it)-f(2k)(N - 1 - it) 
2k ~~~~2k) 2k 

-f(2k) + it) + f(2k)- - it)} dt 
2k 

- IZ1(-1)j{T(N - -IT)* f (j )(N --iT) 
j=l 

- 'P(- -iT). f(j-l)(- - iT} 
N-I 1/2 

+ if T2k(U -iT)f(2k) (u - iT) du 
-1/2 

2k 

- iE{'P1J(-N + --iT)f(j')(N- 2 + iT) 
J=1 

_ (1 -iT)f(j-')(-2 1+ iT)} 
12 2 

N- 1/2 
+ i 2k(-U - iT)f2k) (u + iT) du 

N1/2 

k B 

-z1 (2j)i1 

+ if {P2k(U -iT)f(2k) (u - iT) 
-1/2 

+ P2k(-u -i T)f(2k) (u + iT)} du 

+ fT(r2k)A + it)- (k 
+f0?2kkLt) JkI - + i (2k)N(- 2 -it) 

2k ( it) f (2k it 2 

-f (2k) (_ +it) + f(2k) (_I - it)} dt, 

since F?1(-iT) = TI(-N+ 2 -iT) = 'V (N- 2 -iT) = TV1(2 -iT) = TJ(-2 -iT). 
Applying this to f(21u) with k replaced by k - j, we obtain 

Eo[-2, N -; f2]i) 

k-sl B 
= Z (2j)! (1 - 2 -'+l){f (28-2j- )(N _) If(21+2j- ) 

1(2j)!22 

N- 1/2 
+ iJ | {V2k-2/iu - iT)f (2k) (u - IT) 

+ 'T2k- 21(-U - iT)f2k) (u + iT)} du 
T 

(2ki 
+ 2k21t) (N- + it) f(2k) (N - - it) 

(2k) + it) + -2 -f2 )(-I + t)f (2k)( it)} dt. 
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Hence, by (4.3), 

N- 1/2 N-1 

E [-2IN- 1; A= 1/ f(x)dx-Efm(ln) 
1/2 ~~n=0 

-Eo[-, N-2;f] 
m in~~~~~~~~~~~2i 

+ Cm 28Eo[-2 
1 

N -2; f(2u)] _ f(2u- 1)(N_ -) + f(2/t-l)(_ 1), 

= [= BI 
,uil 

in k-,u B 

=,Cm2 L 2j' ( - 2- 2j+ I) f f(2j+2j- ) (N _-I f t(2p+2j-1l) (_ 

N-I 1/2 

+ i N/ {2k-2,(u - iT)f(2k) (u -_iT) 
-1/2 

+ kP2k-2,(-u - iT)f(2k)(u + iT)} du 

+ 2_2(it) If(2k)( 
I 

+ it) _ f(2k)(- it 

(2k){ + it) + f(2k) it)dt 

in 

ZCen lf( 1)(N - 2) f(2-1) 

k min{mj} B 
_ 

CPn2n (2j 2u) (1 -22J2j+2#+l 
_~ /, 1n2=l(j-8! 

x {f(2 -'(N -) f(2j-2) 

N- 1/2 i n 

+ -i /2 L i E Cm 28T2k-2p (U a- iT) f(2k)(u - iT) 

+ {E Cn 22p 2k-2p (- -i T) }f(2k) u +iT) dt 

t 11 =0)_ 

T i s , n, 

+ J TD ({it) {f(2k) (N - + it) f(2k) (N - - it) 

- (2k)(1 + it) + f(2k)(- - it)} dt 

k 
- ZAI 2 

j{f-21')(N- 4) _ f(2j 1)(-)} + CI(T) + C2(T), 

J~2 
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where 

C 1(T)=(~l~k 0l e -27rTv N _-1/2 2 f( k 
C, (T) =( 1) 

k 
E (2 2kQm (i27v) I_ {e 7 f (u-iT) 

v~tn+l (27rv) J1/2 

- e27'ivuf(2k)(u + iT)}du 

and 

C2 (T) L= (t){ ()(N- + it) f(2k)(N i 

f(2k) + it) + f(2k)( 2-it)} dt. 

In view of Lemma 7, the function f(2k) is of exponential type less than 
27c(m + 1) in S[- , N - 4]. Hence, C1(T) tends to a limit as T -x oc 
and so does C2(T); in particular, 

lim C1(T) = 0. 
T--coo 

Therefore, Theorem 6 holds. El 

The proof of Theorem 7 is completely analogous to that of Theorem 6, and 
so we omit it. 

Proof of Corollary 8. Under our assumptions, f(j)(x) -- 0 as x -- +?o (see[ 
Theorem I1 .3.4*]) for all j > 0 . Now the result follows by applying Corollary 4 
with m = 0 to ff', f", etc. The series (2.28) not only exists as a Cauchy 
principal value but also converges in the usual sense, as is seen by using Corollary 
3. El 

Proofs of Theorems 10 and 1 1. The assumptions of Theorem 10 imply that 
(4.8) lf(x+iy)l=o(x) asx-*++ox 

uniformly for Iyj < yo, where yO is any positive number. In fact, if (2.30) 
holds, then setting 

F(x) = j f(t) dt, 
1/2 

we conclude that 
IF(x) - qx= o(x) as x --- +oo 

for some constant a, and so Theorem 11.3.4* of [1] applied to 

(F(z) - qz)/(z + 1) 
gives 

(4.9) If(x)I = o(x) asx -* +oo. 

Now we obtain (4.8) by using Theorems 6.2.3 and 1.4.9 of [1]. The estimate 
(4.8) holds also in the situation of Theorem 1 1, since (4.9) is one of the as- 
sumptions. 

Applying Theorem 6.2.3 of [1] to f(z)/(1 + z), we conclude from (4.8) that 

(4.10) If(x+it)I<cII+x+itle61'" forO<x<+oo, teR, 
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where c is a positive constant and a < 27c(m+ 1) . Using (4.8) and (4.10), and 
arguing as in the proof of Lemma 4, we find that 

lim Pin (-2 { f (N + A + it) - f (N + A - it)} dt = 0 
N-*?cooN IO 1 +e2! 

uniformly for A E [2 1 4] . With this, the proofs of Theorems 10 and 11 can be 
completed analogously to those of Theorems 4 and 5. u 

Proof of Theorem 12. Let E > 0 and (s > 0 be given. We can choose real 
numbers yI, 'Y2, ... such that [5] 

00 
snY 

(z): 1 s=ny z (X(0) = 1) 

represents an entire function of exponential type (s satisfying 

x(x) = 0 (ex~ Qogij)1c) as x--*+?oo. 
(((log IX) 

I+" 

By standard techniques (see [1, Chapter 6]) it can be shown that this law of 
decay holds in every strip parallel to the real line. Hence 

v(Z): = Z(z + i) * X(Zf + i) 

is an entire function of exponential type 2( which is positive on the real line 
and 

TP(x) = 0 (exp~ (-2(loIX +)) as x--*+?oo. 
( ( (log IlX )) 

It is therefore possible to find an entire function v which is positive on the real 
line and Ad f is of exponential type less than 7c(k+ 1) such that T(x) f (x) -* 0 
as x -* +00. Now applying Corollary 4 to d(P(z) . f(z))/dz with m = 

(k- 1)/2, we obtain 

0 = ((x) * f(x))' dx = Cin2n E v(n) f (n) 
-oo n=-oo 

Since cn21n $0 and T(n) > 0 for all n, we conclude that f(k)(n) = 0 for all 
n E Z. Hence f(z) _ 0 by Theorem D. u 

Proof of Theorem 13. Under our assumptions all derivatives of f(x) + f(-x) 
tend to zero as x ax-* ? . Thus, setting m = (j - 1)/2 and applying Corollary 4 
to f", we obtain 

+ 00 -00 

0 = _| /(x) dx = cin 2in E f (n). 
-oo n=-cxo 

Since cm 2,1n $& 0, it follows from (2.32) that f(J+l)(n) = 0 for all n E Z. 

Arguing in a similar way with f(21v), where 2v < 2k - j + 1, we successively 
find that the derivatives of f of even order j + 1, ... , 2k vanish for all n E Z. 
The conclusion then follows from Theorem E. u 
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